WATERSHED ATLAS OF AFGHANISTAN

1ST EDITION - WORKING DOCUMENT FOR PLANNERS

Raphy Favre, Watershed Consultant
Golam Monowar Kamal, AIMS Field Coordinator

January 2004
Kabul
“Kabul be zar basha, be barf ne”
“Kabul may be without gold, but not without snow”
Afghan Proverb
TABLE OF CONTENT

INTRODUCTION

PART I CLIMATE, WATER AND NATURAL RESOURCES:
THE CONTEXT OF AFGHANISTAN

I. LOCATION AND CLIMATE
1. Location and Geographic/Geologic Context
2. Atmospheric Pressure and Wind
3. Precipitation
4. Temperature and Potential ETP
5. Indigenous Knowledge on Weather Conditions
6. Rehabilitation of the (Agro-) Meteorological Network

II. RIVERS REGIME
7. Rain/snow fed rivers
8. Snow/Glacier fed rivers

III. WATER RESOURCES IN AFGHANISTAN
9. Water Resources Overview
10. Hydrological Stations Network
11. Use of Water Resources for Developing Afghanistan or the Development Dilemma
12. Water Bodies

V. A WORD ON ‘WATERSHED MANAGEMENT’ IN AFGHANISTAN

PART II METHODOLOGY AND TERMINOLOGY

I. WATER CATCHMENTS TERMINOLOGY

II. METHODOLOGY
1. Main References used for the Classification
2. Factors considered for the Water Catchment Classification
 2.1 River Basins
 2.2 Watersheds
3. Methodology used for Water Catchments Boundaries Delineation
II. NOTE ON RIPARIAN ISSUES

III. DESCRIPTION OF THE 5 RIVER BASINS OF AFGHANISTAN

1. Amu Darya River Basin
 1.1 General
 1.2 Transboundaries Riparian Issues
 1.3 Environmental Highlights
 - Pamir-i Buzurg
 - Ajar Valley
 - Tugai Forests
 1.4 Agricultural Highlights
 - Valley Floor Irrigation in Mountainous Area
 - Intensive Irrigated Area
 - North-Eastern Rain-fed Area
 1.5 Historical Highlights

2. Northern River Basin
 2.1 General
 2.2 Transboundaries Riparian Issues
 2.3 Environmental Highlights
 - Band-i Amir Lakes
 - Pistachio Woodlands
 - Pastureland
 2.4 Agricultural Highlights
 - Northern Rain-fed Area
 - Northern Irrigated Oases
 2.5 Historical Highlights

3. Harirod-Murghab River Basin
 3.1 General
 3.2 Transboundaries Riparian Issues
 3.3 Environmental Highlights
 - Pistachio and Juniperus Forests
 3.4 Agricultural Highlights
 - Intensive Irrigated Area of Herat Lowland
 - Valley Floor Irrigation in Mountainous Area
 - Western Rain-fed Area
 3.5 Historical Highlights

4. Helmand River Basin
 4.1 General
 4.2 Transboundaries Riparian Issues
 4.3 Environmental Highlights
 - Sistan Depression Wetlands
 - Ab-i Istada
 - Dasht-i-Nawur
 4.4 Agricultural Highlights
 - Formal Irrigation Schemes from large Storage Dams
 - Intermittently irrigated land in the Sistan Depression
PART IV DESCRIPTION OF WATERSHEDS

I. MAP AND STATISTICS BY WATERSHED

II. AMU DARYA RIVER BASIN
1. Panj Watershed
2. Kokcha Watershed
3. Ab-i Rustaq Watershed
4. Khanabad Watershed
5. Kunduz Watershed

III. NORTHERN RIVER BASIN
6. Khulm Watershed
7. Balkhab Watershed
8. Sari Pul Watershed
9. Shirin Tagab Watershed

IV. HARIROD-MURGHAB RIVER BASIN
10. Bala Murghab Watershed
11. Khushk wa Kashan Rod Watershed
12. Upper Hari Rod Watershed
13. Lower Hari Rod Watershed

V. HILMAND RIVER BASIN
14. Adraskan Rod Watershed
15. Farah Rod Watershed
16. Khuspas Rod Watershed
17. Khash Rod Watershed
18. Upper Hilmand Watershed
19. Middle Hilmand Watershed
20. Lower Hilmand Watershed
21. Sistan-Hilmand Watershed
22. Chagay Watershed
23. Upper Arghandab Watershed
24. Lower Arghandab Watershed
25. Tarnak Rod Watershed
26. Arghistan Rod Watershed
27. Sardih wa Ghazni Rod Watershed
28. Dasht-i Nawur Watershed

VI. KABUL (INDUS) RIVER BASIN
29. Kabul Watershed
30. Chak wa Logar Rod Watershed
31. Ghorband wa Panjshir Watershed
32. Ailingar Watershed
33. Kunar Watershed
34. Shamal Watershed
35. Gomal Watershed
36. Pishin Lora Watershed

VII. NONE DRAINAGE AREAS
37. Dasht-i Margo
38. Registan-i Sedi
39. Dasht-i Naumed
40. Registan
41. Dasht-i Shortepa

PART IV CONCLUSION, ACKNOWLEDGMENTS AND BIBLIOGRAPHY

I. CONCLUSION
II. ACKNOWLEDGEMENTS
III. PICTURES CREDIT
IV. BIBLIOGRAPHY

PART V WATERSHED MAPS

ANNEXES
ANNEX I Afghanistan Long Term Average Climatic Data
ANNEX II Historical Hydrological Stations and Agro-Meteorological Stations Geographical Coordinates
ANNEX III 2004 Basin Management Map - MIRWE
MAPS

Map 1 Locations of 31 selected Historical Stations
Map 2 Map of the current Agro-Meteorological Network
Map 3 MODIS surface reflectance mosaic satellite image showing the snow
 cover extend (white colour) in winter on the 27th of December 2002
Map 4 MODIS surface reflectance mosaic satellite image showing the snow
 cover extend (white colour) early summer on the 25th of May 2003
Map 5 MODIS surface reflectance mosaic satellite image showing the snow
 cover extend (white colour) early summer on the 30th September 2000
Map 6 Location of Historical Hydrological Stations
Map 7 Existing and Proposed Dams of Afghanistan
Map 8 River Basin Map of Afghanistan and Proportion of Total River Flow by
 River Basin
Map 9 River Basins and watersheds vectors on Landsat Satellite Image
Map 10 Watershed Map of Afghanistan
Map 11 River Basin and Watershed Map of Afghanistan with River Lines
Map 12 2004 Basin Management Map - MIRWE

FIGURES

Figure 1 Main Mountain ranges in Afghanistan.
Figure 2 Tectonic Map of Afghanistan
Figure 3 Regional rainfall patterns in Afghanistan and surrounding countries
Figure 4 Annual Precipitation in Afghanistan
Figure 5 Temperature of the coldest month
Figure 6 Temperature of the hottest month
Figure 7 International River Basins of Asia
Figure 8 Flowchart on the process of the watershed boundary delineation for
 Afghanistan
Figure 9 Map on vegetation in Afghanistan
Figure 10 Hilmand Valley project as planned in 1956
Figure 11 Sketches of a Karez
Figure 12 Map of the major Karez irrigated areas in Afghanistan

GRAPHS

Graphs 1 and 2 Wind Speed in Northern and Southern belts of Afghanistan
Graphs 3 and 4 Discharge of two rain/snow fed rivers, the Hari Rod and Farah Rod rivers
Graph 5 Discharge of a rain/snow fed rivers, the Ghorband
Graph 6 Discharge of a rain/snow fed rivers influenced by the Monsoon rains in
 summer, the Shamal
Graphs 7 and 8 Discharge of two snow/glacier fed rivers, the Kunar and Kokcha rivers.
Graph 9 Area (S. Km.) of each River Basin
Graph 10 Number of Settlements by River Basin
Graph 11 Population by River Basin
Graph 12 Population Density by River Basin
Graph 13 Snow Cover by River Basin
Graph 14 Irrigated Land (Intensively cultivated 1 crop per year and 2 crops per year) by River Basin
Graph 15 Irrigated – Intermittently cultivated Land by River Basin
Graph 16 Rain-fed (Sloping and Flat Laying Areas) by River Basin
Graph 17 Rangeland by River Basin
Graph 18 Forest Cover (Closed, Open and Degenerated Classes) by River Basin
Graph 19 Water Bodies Area by River Basin
Graph 20 Marchland (Permanently and Seasonally Inundated) by River Basin
Graph 21 Area (S. Km.) of each Watershed
Graph 22 Number of Settlements by Watershed
Graph 23 Population by Watershed
Graph 24 Population Density by Watershed
Graph 25 Permanent Snow Cover by Watershed
Graph 26 Irrigated Land (Intensively cultivated 1 Crop per Year and Intensively cultivated 2 Crops per Year) by Watershed
Graph 27 Irrigated – Intermittently cultivated Land by Watershed
Graph 28 Rain-fed (Sloping and Flat Laying Areas) by Watershed
Graph 29 Rangeland by Watershed
Graph 30 Forest Cover (Closed, Open and Degenerated Classes) by Watershed
Graph 31 Water Bodies Area by Watershed
Graph 32 Marchland (Permanently and Seasonally Inundated) by Watershed
Graph 33 Precipitation and ETP in Faizabad
Graphs 34, 35 and 36 Discharge curves along the Kokcha river and view of the Kokcha river above Jurm. Kokcha watershed
Graphs 37 and 38 Discharge curves along the Warduj river, a tributary to the Kokcha river. Kokcha watershed
Graph 39 Discharge curves along the Keshem river, a tributary to the Kokcha river. Kokcha watershed
Graphs 40, 41 and 42 Discharge curves along the Farkhar river, Khanabad watershed
Graph 43 Discharge curves on the Bangi river, a tributary of the Farkhar river. Khanabad watershed
Graph 44 Precipitation and ETP in Kunduz
Graphs 45 to 48 Discharge curves on the Bamyan, Surkhab and Andarab rivers, main tributaries of the Kunduz river. Kunduz watershed
Graphs 49 to 52 Discharge curves along the Kunduz river. Kunduz watershed
Graphs 53 and 54 Discharge curves on the Bamyan river at different scale. Kunduz watershed
Graph 55 Discharge curve on the KuhlIm river. KuhlIm watershed
Graph 56 Precipitation and ETP in Mazar-i Sharif
Graphs 57 and 58 Discharge curves along the Balkh river. Balkhab watershed
Graph 59 Precipitation and ETP in Shibergham
Graph 60 Discharge curves along the Sari Pul river. Sari Pul watershed
Graph 61 Precipitation and ETP in Shibergham
Graphs 62 and 63 Discharge curves along the Shirin Tagab river. Shirin Tagab watershed
Graph 64 Discharge curves along the Qaisar river, a tributary to the Shirin Tagab river. Shiring Tagab watershed
Graphs 65 and 66 Discharge curves along the Murghab river. Bala Murghab watershed
Graph 67 Discharge curves on the Boom river, a tributary to the Murghab river. Bala Murghab watershed
Graph 68 Precipitation and ETP in Qadis
Graph 69 Discharge curves on the Kashan river, a tributary to the Murghab river.
Kushk wa Kashan Rod watershed

Graph 70 Discharge curves on the Kushk river, a tributary to the Murghab river.
Kushk wa Kashan Rod watershed

Graph 71 Precipitation and ETP in Lal

Graphs 72, 73 and 74 Discharge curves along the Hari Rod river. Upper Hari Rod watershed

Graphs 75 and 76 Discharge along the Kawgan river, a tributary to the Hari Rod river. Upper
Hari Rod watershed

Graphs 77 and 78 Precipitation and ETP and on the right, Wind Speed and Temperature

Graphs 79, 80 and 81 Discharge curves along the Karukh Rod river. Lower Hari Rod watershed

Graph 82 Discharge curves along the Karukh Rod river, a tributary of the Hari Rod.
Lower Hari Rod watershed

Graph 83 Discharge curves on the Adraskan Rod river. Adraskan Rod watershed

Graph 84 Precipitation and ETP in Farah Province centre

Graphs 85 and 86 Discharge curves along the Farah Rod river. Farah Rod watershed

Graph 87 Discharge curves on the Farah Rod river. Farah Rod watershed

Graphs 88 to 91 Discharge curves along the Hilmand river. Upper Hilmand watershed

Graphs 92, 93 and 94 Discharge curves along the Tiri and Kaj rivers, two tributaries of the
Hilmand river. Upper Hilmand watershed

Graph 95 Discharge curves along the Musa Qala Rod river, a tributary of the
Hilmand river. Middle Hilmand watershed

Graph 96 Precipitation and ETP in Bost

Graphs 97 and 98 Discharge curves along the Hilmand river. Lower Hilmand watershed

Graphs 99 to 101 Discharge curves along the Hilmand river. Lower Sistan-Hilmand
watershed

Graphs 102 and 103 Discharge curves along the Arghandab river. Upper Arghandab watershed

Graph 104 Precipitation and ETP in Kandahar Airport

Graphs 105 and 106 Discharge curves along the Arghandab river. Lower Arghandab watershed

Graph 107 Comparison of discharge curves above and below the Band-i Dahla Dam
on the Arghandab river. Lower Arghandab watershed

Graph 108 Discharge curves along the Tarnac Rod river, a tributary of the Arghandab
river. Tarnac Rod watershed

Graphs 109 and 110 Discharge curves along the Arghistan Rod river, a tributary of the
Arghistan Rod. Arghistan Rod watershed

Graph 111 Discharge curves along the Lora Rod river, a tributary of the Arghandab
river. Arghistan Rod watershed

Graph 112 Precipitation and ETP in Ghazni

Graphs 113 and 114 Discharge curves along the Ghazni Rod river. Ghazni wa Sardeh Rod
watershed

Graphs 115 and 116 Discharge curves along the Sardeh Rod river. Ghazni wa Sardeh Rod
watershed

Graph 117 Discharge curves along the Ghazni wa Sardeh Rod river near Ab-i Istada.
Ghazni wa Sardeh Rod watershed

Graphs 118 and 119 Precipitation and ETP in Kabul Airport (left) and Jalalabad (right)

Graphs 120 to 123 Discharge curves along the Kabul river. Kabul watershed

Graphs 124 and 125 Discharge curves along the Kabul river West of Kabul with normal scale.
Kabul watershed

Graphs 126 to 129 Discharge curves along the Chack wa Logar Rod river. Chack wa Logar
Rod watershed

Graph 130 Precipitation and ETP in Jabuluussaraj
Graph 131 Discharge curves along the Ghorband river. Ghorband wa Panjshir watershed

Graphs 132 and 133 Discharge curves along the Panjshir river. Ghorband wa Panjshir watershed

Graph 134 Discharge curves along the Ghorband wa Panjshir river in the Shomali plain. Ghorband wa Panjshir watershed

Graph 135 Discharge curves along the Tagab river in the Shomali plain. Ghorband wa Panjshir watershed

Graph 136 Discharge curves on the Alingar river. Alingar watershed

Graphs 137 to 139 Discharge curves along the Kunar river. Kunar watershed

Graph 140 Discharge curves along the Pech river, a tributary of the Kunar river. Kunar watershed

Graph 141 Precipitation and ETP in Khost

Graphs 142 and 143 Discharge curves along the Shamal river. Shamal watershed

TABLES

Table 1 Historical data on Precipitation, Temperature, Potential ETP and Wind in 31 selected stations in Afghanistan

Table 2 Mean Annual Volume of River Discharge by River Basin

Table 3 Irrigated Area by Surface Water and Alluvial Ground Water

Table 4 Formal Irrigation Schemes built by the Government of Afghanistan

Table 5 Summary of Hydro-Power Project of the Draft Power Sector Master Plan

Table 6 Level of Interventions and Terminology on Water Catchments

Table 7 Types of GIS Data used for the Definition of the River Basins and Watershed Maps

Table 8 Area and Population by River Basin

Table 9 Snow Cover, Water Bodies and Marshlands by River Basin

Table 10 Agriculture Land, Rangeland and Forest Cover by River Basin

Table 11 River basins and treaties in Afghanistan

Table 12 Area by Watershed and Main River Names

Table 13 Population and Settlements by Watershed

Table 14 Snow Cover, Water Bodies and Marshlands by Watershed

Table 15 Agriculture Land, Rangeland and Forest Cover by Watershed

Table 16 Landcover classification for Panj Watershed

Table 17 Landcover classification for Kokcha Watershed

Table 18 Landcover classification for Ab-i Rustaq Watershed

Table 19 Landcover classification for Khanabad Watershed

Table 20 Landcover classification for Kunduz Watershed

Table 21 Landcover classification for Khulm or Tashkurgan Watershed

Table 22 Landcover classification for Balkhab Watershed

Table 23 Landcover classification for Sari Pul Watershed

Table 24 Landcover classification for Shirin Tagab Watershed

Table 25 Landcover classification for Bala Murghab Watershed

Table 26 Landcover classification for Khushk wa Kashan Rod Watershed

Table 27 Landcover classification for Upper Hari Rod Watershed

Table 28 Landcover classification for Lower Hari Rod Watershed

Table 29 Landcover classification for Adraskan Rod Watershed

Table 30 Landcover classification for Farah Rod Watershed
<table>
<thead>
<tr>
<th>Table</th>
<th>Landcover classification for</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Khuspas Rod Watershed</td>
</tr>
<tr>
<td>32</td>
<td>Khash Rod Watershed</td>
</tr>
<tr>
<td>33</td>
<td>Upper Hilmand Watershed</td>
</tr>
<tr>
<td>34</td>
<td>Middle Hilmand Watershed</td>
</tr>
<tr>
<td>35</td>
<td>Lower Hilmand Watershed</td>
</tr>
<tr>
<td>36</td>
<td>Sistan-Hilmand Watershed</td>
</tr>
<tr>
<td>37</td>
<td>Chagay Watershed</td>
</tr>
<tr>
<td>38</td>
<td>Upper Argandab Watershed</td>
</tr>
<tr>
<td>39</td>
<td>Lower Argandab Watershed</td>
</tr>
<tr>
<td>40</td>
<td>Tarnak Rod Watershed</td>
</tr>
<tr>
<td>41</td>
<td>Arghistan Rod Watershed</td>
</tr>
<tr>
<td>42</td>
<td>Sardih wa Ghazni Rod Watershed</td>
</tr>
<tr>
<td>43</td>
<td>Dasht-i Nawur Watershed</td>
</tr>
<tr>
<td>44</td>
<td>Kabul Watershed</td>
</tr>
<tr>
<td>45</td>
<td>Chak wa Logar Rod Watershed</td>
</tr>
<tr>
<td>46</td>
<td>Ghorband wa Panjshir Watershed</td>
</tr>
<tr>
<td>47</td>
<td>Alingar Watershed</td>
</tr>
<tr>
<td>48</td>
<td>Kunar Watershed</td>
</tr>
<tr>
<td>49</td>
<td>Shamal Watershed</td>
</tr>
<tr>
<td>50</td>
<td>Gomal Watershed</td>
</tr>
<tr>
<td>51</td>
<td>Pishin Lora Watershed</td>
</tr>
<tr>
<td>52</td>
<td>Dasht-i Margo none drainage area</td>
</tr>
<tr>
<td>53</td>
<td>Registan-i Sedi none drainage area</td>
</tr>
<tr>
<td>54</td>
<td>Dasht-i Naumed none drainage area</td>
</tr>
<tr>
<td>55</td>
<td>Registan none drainage area</td>
</tr>
<tr>
<td>56</td>
<td>Dasht-i Shortepa none drainage area</td>
</tr>
<tr>
<td>57</td>
<td>Level of Interventions and Terminology on Water Catchments</td>
</tr>
</tbody>
</table>
INTRODUCTION

In Afghanistan, over 80 per cent of the population relies directly on the natural resource base to meet their daily needs. Natural resources management is critical to improve livelihoods. However, the recent UNEP\(^1\) environment assessment shows that two and half decades of war have resulted in widespread environmental degradation throughout the country, which poses a serious threat to future Afghan livelihoods. The major natural resource in Afghanistan is ‘Water’ - as expressed in a number of Afghan proverbs – and therefore sound water management is essential for the successful future development of the country.

The National Development Framework (NDF) drafted by the Government of Afghanistan considers that “river basin management is the best instrument for dealing with the management of water resources”. Further, the NDF notes that “the government is therefore considering creating a Commission for management of each of the major river basins of the country”. Linked with these institutional reforms the NDF plans to improve natural resources use efficiency, improve catchments and on-farm water management, introduce more drought tolerant farming systems, improve technologies for rain-fed farming systems, better agricultural services, increase crop diversification and cash crop enterprises, improve pasturage and productivity and successful animal husbandry systems.

Adopting a water catchment approach would involve integration of water resources management, rangeland and forestry activities, with the farming and urban development activities in the basin. “Integrated watershed management with participation of all the relevant key actors has become widely accepted as the approach best suited for sustainable management of renewable and non renewable natural resources”\(^2\).

The Watershed Atlas aims to support natural resources management and related monitoring activities (i.e river flow, climatic data, agriculture production) with a planning tool in the form of geo-referenced river basin and watershed maps. It is an open source of information on rivers and watersheds of Afghanistan. The river basins and watershed maps have been prepared using Arc-View 3.2 software and are fully compatible for area based statistical analysis, they can be overlaid with any other geo-referenced maps and data on Afghanistan. The digital data can be downloaded from www.aims.org.af or www.fao.org/world/afghanistan websites. The Watershed Atlas is a first edition and updating the Atlas will only be possible with the further contribution of interested parties - i.e. governmental, international and non-governmental institutions - working in the sector of water and natural resources management in Afghanistan.

The Watershed Atlas is divided in 5 parts:

Part I: Overview of the climatic, water and natural resources context of Afghanistan. Several maps on climate, mountain ranges and tectonic, snow cover satellite imageries, location of (agro-) climatic and hydrological stations, existing and proposed dams are presented. Also, tables on planned hydro-power sector dam projects, sources of irrigation and formal irrigation schemes are presented. Finally, a brief discussion on watershed management in Afghanistan is made with a number of pictures illustrating major issues on watershed and natural resources management.

Part II: Discussion on Methodology for the classification and delineation of the river basin and watershed boundaries. This section proposes a terminology for four levels of water catchments areas for Afghanistan.

Part III: Description of the 5 River Basins of Afghanistan. Includes discussions on trans-boundaries riparian situation, hydrological infrastructures, environment and natural resources issues, agriculture patterns and main historical developments along water sources.

Part IV: Description of the 41 watersheds of Afghanistan. The description includes discussions on watershed features, sources of rivers and tributaries, landcover and importance of agriculture land and graphs on water flow discharge based on the Yearly Hydrological Book data compiled by the Ministry of Irrigation. These data have been recently entered by ADB.

Part V: Conclusion and Recommendations, Acknowledgment and Bibliography.

Part VI: Watershed Maps. For each watershed, 4 maps are presented; Landsat TM satellite image, Landcover map, Elevation map and river map.

Part VII: Annexes, which include climatic data, location and codes of the historical hydrological stations and coordinates of the pictures presented in the Atlas.

Throughout the document, 143 pictures and panoramic views, taken during extensive field missions, are illustrating features of river basins and watersheds. The geographical coordinates and the direction from where the pictures were taken (capital letters after the coordinates) are presented with each picture. These pictures and panoramic views provide a first database for monitoring of environmental changes in critical locations across Afghanistan.

This Atlas was produced thanks to one year of informal and voluntary collaborative work between FAO and AIMS staffs that started in early 2003. FAO has contributed in defining the watershed boundaries based on existing literature, consultation with relevant governmental institutions (Ministry of Irrigation and Ministry of Water and Power), international organizations working in the water/natural resources management sector and through extensive field validation of boundaries in 2003. AIMS has contributed to the project with GIS work to delineate the boundaries and provided office facilities for the watershed consultant. The project could be finalized thanks to the financial support of SDC and administrative support of AREU.

Finally, a presentation of River Basins and Watersheds is a discussion on geography, climate, valley systems, agriculture, and Afghanistan’s natural beauty and historical highlights that developed along water sources. Working on watershed is setting oneself up for journey into a fascinating country to which readers are invited!

“Spatial variability is at the heart of geography, a field dedicated to understanding where things are and why. It is also a critical component in understanding many complex systems, particularly those which include interactions between wildly disparate sets of forces. Fortunately, the nature has given us a unit for analysis in which all of these components coalesce - the River Basin, but unfortunately, many analyses tend to ignore this hydro-centric unit, especially when including socio-economic or geo-political variables, in favor of units for which one can actually find data, notably the nation-state” (Wolf, 2002)
PART I

CLIMATE, WATER AND NATURAL RESOURCES:
THE CONTEXT OF AFGHANISTAN
Picture 1
Lake and wetland in Samangan province, near Cheshma-i Hayat. 25 March 2003 (N36.54, E67.81, SW)
I. LOCATION AND CLIMATE

1. Location and Geographic/Geologic Context
Afghanistan is a landlocked country of 652,000 square km. Over three quarters (approximately 75%) is mountainous. More than a quarter (27 per cent) of the national territory lies above 2,500 m. It is strategically located at the cross-roads of three main regions; the Indian sub-continent to the east, central Asia to the north and the Middle East in the west. Afghanistan neighbours are the landlocked CIS countries (Turkmenistan, Uzbekistan, and Tajikistan) to the north, Pakistan to the east and south, the Islamic Republic of Iran to the west and China to the north-east. About 10 % of Afghanistan’s total land is arable, with less than 2 % under forest cover and about 82 % rangeland and bare land.

![Main Mountain ranges in Afghanistan. The thickness of the lines is proportional to elevation](image)

The Afghan landscape is mostly denuded – harsh desert. A group of students travelling from France by car in the 1970s stopped a geographer at work near the Maidan Shar in Wardak and asked “But, tell us, how long all these deserts are going to last!” A reactions shared by countless visitors to Afghanistan. In the central highlands and the North-East, the Hindu Kush elevates its rugged, brownish and inhospitable slopes. Even when the relief is smoothing, the nature is not more generous. The geographers distinguish the ‘lut’, arid steps hostile to any cultivation from the ‘dasht’, steppes which turn green just after snow melt or rainfall in spring.

and attract nomadic livestock6. The most extensive flatlands are located in the southwest of the country, centered around the drainage of the Hilmand basin and in the north of the country, between the northern foothills of the Amu Darya (Oxus) River (marking the border with Tajikistan and Uzbekistan). Both regions, the southwest in particular, include large areas of sand desert.

These desolate landscapes contrast sharply with the exuberant and fertile alluvial irrigated plains generally surrounding the Hindu Kush mountains and the narrow irrigation strips bordering rivers that descend sinuous mountainous valleys. In the North and in the central Highlands low productivity ‘lalmi’ or rain-fed dry-land farming is practised on mountain slopes.

Two mountainous arcs rising from the Iranian plateau are traversing Afghanistan (see figure 1):

1. The Northern arc starts from Northern Iran with the Elbourz Mountains and continues through the Hindu Kush in Afghanistan up to the Pamir and the Karakoram chains, and

2. The Southern arc starts in the Zarghos mountains in Western Iran, continues through the Baluchistan mountains, the Suleiman mounts across Pakistan and Afghanistan, the Spingar (or Sefid Koh in Persian) of the presently well known Tora Bora area and ends with the Northern arc in the Karakoram mountains.

\textbf{Figure 2}

\textit{Tectonic Map of Afghanistan7.}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{Tectonic_Map_Afghanistan.png}
\caption{Tectonic Map of Afghanistan.}
\end{figure}

6 Etienne, G., \textit{Ibid.}, 1972.

Geological rock composition and geological faults (by crushing rocks) have influenced the position of rivers and water catchment areas of Afghanistan. The Hari Rod fault traverses the country and extends in two branches with the Zebak fault up to the border to the Wakhan in Ishkashim and the Badakhshhi Markazi fault up to Darwaz district in the North-East (see figure 2). This fault has defined East-West oriented valley systems such as the Hari Rod valley, Bamyan and Shibar valleys, Ghorband (picture 2) and Panjshir valleys, Zebak valley and Dara-i Shewa valley.

Picture 2
Abandoned meander of the Ghorband river that flows eastward along the Hari Rod geological fault in central Afghanistan. The fault cuts directly through and facilitates the meander-neck cutoff. The river flows straight at the foot of the front mountain (background of picture). Ghorband, Parwan province, 5 June 2003 (N35.00, E68.81, N)

The geology of Afghanistan is a story of colliding landmasses that continues unabated - as demonstrated by recent devastating earthquakes in the North. Afghanistan is rich in minerals of economic interest. However, knowledge is still fragmentary and constitutes a promising field given the fact that Afghanistan is at a geological cross-road between East-Asia, Middle-East and Central Asia. The country’s geologic mineral resources range from minerals such as lapis lazuli (picture 3), emerald and other fine gems, to more standard metal ore deposits such as copper, iron or gold. The Hajigak iron ore deposit near the historical province of Bamyan has an estimated resource of 2 billion tons. Identified copper resources in Logar are estimated to be 240 million tons, making it a world-class deposit. But Afghanistan’s geological resources have been left largely untapped because of the difficulties of terrain, poor road networks and devastating civil war. It would be hoped these geological resources will one day be used to bring in foreign currency, provide jobs, and rebuild the country. USGS recently prepared an inventory of known mine resources of Afghanistan.

Picture 3
Inside a mines of Lapis Lazuli in Maidan-i Lajuar, Badakhsan province, 31 August 2003 (N36.23, E70.81)

2. Atmospheric Pressure and Wind

Afghanistan and the neighbouring areas of Central Asia and the Iranian highlands are a region with some of the lowest atmospheric pressures in the World. Similar low pressures in July exist only in the Antarctic regions. In the capital city of Kabul, which is located at about 1800 metres above sea level, the atmospheric pressure is approximately 610 mm and in the Sistan depression, 500-700 absl, around 700 mm10.

Dominant wind directions blow all year round from the North and West. It is only in the Eastern part of the country that the influence of the monsoon from the Indian sub-continent is present between July to September. In winter, cold air from the Mediterranean region can pass through Afghanistan up to the Suleiman mount in Pakistan. Thus the Eastern part of Afghanistan has two rainfall peaks in January-February and July-September.

Generally, winds are not strong in Afghanistan and no air movements are common both in summer and winter. However, in Sistan, very strong dust winds blow in winter. One of the most famous winds in Afghanistan is the ‘bad-o satu bist roz’ or the ‘hundred and twenty days wind’ which blows with great strength and without interruptions between early/mid-June to end of September. Ephemeral whirl dust winds throwing dirt and sand several hundred meters up in the air are common throughout the country during hot days in summer. The graphs 1 and 2 show that in Herat and Ghazni monthly wind speed average is above 3 meters/second.

Graphs 1 and 2
Wind Speed in Northern and Southern belts of Afghanistan11.

3. Precipitation

Afghanistan is an arid to semi-arid country receiving erratic rainfall over the years. Rainfall, which varies from a low 75 mm in Farah to 1’170 mm in south Salang, occurs mostly in the winter months and particularly in the February/April period. The wet season is concentrated in winter and spring when the vegetative cover is low. In higher elevation, precipitation falls in the form of snow that is highly critical for river flow and irrigation in summer. From June to October, Afghanistan receives hardly any precipitation. These rainfall patterns result in high dependency on snow melts for irrigation (see satellite images in map 3 to 5). The figure 3 illustrates rainfall patterns for Afghanistan and surrounding countries.

10 J. Humlum, \textit{Ibid.}, 1959.

11 Source: Department of Meteorology, Department of Transport and Tourism. The data were entered by FAO Agro-meteorology department in Kabul under the supervision of Rabah Lekhal, FAO Agro-meteorologist.
The southern part of Afghanistan (the croissant from Herat to Ghazni) receives less than 300 mm of rain per year. The region south of Bust and Farah receives less than 100 mm of rainfall per year, while the highest mountains in these areas may receive some more (Koh-i Baba range, Band-i Baian, Safid Koh, Tirband-i Turkistan). The Hindu Kush mountains in the North-East and Eastern (western edge of summer monsoon from the Indian continent) receive above 400 mm rainfall per annum figure 4. Under these climatic conditions, the major limiting factor for agriculture production is water availability at critical growing periods.

12 Source: www.iri.columbia.edu
Afghanistan is a drought prone country. In Afghanistan, a severe drought generally equates to low winter rainfall in two consecutive years. Rainfall records suggest that low winter rainfall in two successive years occurs at least once every 10 to 15 years. The last below average consecutive years were 1963-1964, 1966-1967, 1970-1971-1972, 1999-2000-2001 and partly 2002 (in the southern part of the country).

4. Temperature and Potential ETP

The Afghan climate is continental with temperatures ranging from above 30° C in summer (figure 5) to below -20 degrees C in winter (figure 6). In spring, late frost can affect fruit production. Annual evapotranspiration rates are relatively low in the Hindu Kush (9,000-1,200 mm) because of severe and long winters. They vary between 1,200 m and 1,400 mm in the northern plains and reach values up to 1,800 mm in the southern and south-western plains. However, summer evapotranspiration rates are high everywhere showing a daily peak of 5-8 mm in June/July/August. Due to strong winds occurring particularly in Herat and in the southern-western plains (‘bad-i sad-o bist ruz’, the 120 days wind), maximum daily evapotranspiration rates are over 10 mm in July/August (max 11 mm in July).

Figure 5

Temperature of the coldest month. The scale only indicates the printing size of the GEOCART Atlas.

Agriculture is practiced between 250 metres to a little above 3,500 metres elevation in the central highlands (Hazarajat) and the mountains of Badakhshan, mostly concentrated on plain and valley floor irrigation. Considerable differences in agricultural practices and cropping patterns exist between regions as well as locally - between the bottom and the top of valleys. Agriculture varies from sub-tropical areas such as Jalalabad (315 frost free days) were citrus and sugar cane areas grow to temperate cool areas where only barley and wheat are cultivated (> 180 frost days/year). Spring and autumn frost can cause damages on fruits (in spring – see picture 4) and crops (in autumn).

Figure 6
Temperature of the hottest month. The scale only indicates the printing size of the GEOCART Atlas 16.

Pictures 4 and 5
Frost damage on vineyard in spring 2003. Injil district, Herat province, 29 May 2003. Mulberry branches defoliated after a hailstorm in Herat, Koshan district. 30 May 2003
(Picture 4: N34.33, E62.28; Picture 5: N34.63, E61.24)

Table 1
Historical data on Precipitation, Temperature, Potential ETP and Wind in 31 selected stations in Afghanistan

<table>
<thead>
<tr>
<th>STATION NAME</th>
<th>Precipitation</th>
<th>ETP</th>
<th>ETP/Day*</th>
<th>Temp</th>
<th>Wind</th>
<th>Sunshine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min Mm</td>
<td>Normal mm</td>
<td>Max mm</td>
<td>Total mm</td>
<td>Mean mm</td>
<td>Max Month mm</td>
</tr>
<tr>
<td>Baghlan</td>
<td>961</td>
<td>2.67</td>
<td>5.73</td>
<td>0.33</td>
<td>14.8</td>
<td>0.9</td>
</tr>
<tr>
<td>Bamyan</td>
<td>382.4</td>
<td>138.6</td>
<td>57.7</td>
<td>1585</td>
<td>4.40</td>
<td>7.90</td>
</tr>
<tr>
<td>Bust</td>
<td>196.0</td>
<td>92.7</td>
<td>32.4</td>
<td>185</td>
<td>2.57</td>
<td>6.07</td>
</tr>
<tr>
<td>Chakhcharan</td>
<td>246.5</td>
<td>187.8</td>
<td>137.5</td>
<td>905</td>
<td>2.51</td>
<td>6.00</td>
</tr>
<tr>
<td>Faizabad</td>
<td>791.0</td>
<td>501.3</td>
<td>300.1</td>
<td>925</td>
<td>2.57</td>
<td>6.07</td>
</tr>
<tr>
<td>Farah</td>
<td>193.0</td>
<td>90.1</td>
<td>38.0</td>
<td>1468</td>
<td>4.08</td>
<td>8.27</td>
</tr>
<tr>
<td>Gardez</td>
<td>521.1</td>
<td>319.3</td>
<td>141.2</td>
<td>1359</td>
<td>3.78</td>
<td>7.57</td>
</tr>
<tr>
<td>Ghazni</td>
<td>551.2</td>
<td>284.8</td>
<td>90.2</td>
<td>1409</td>
<td>3.91</td>
<td>8.40</td>
</tr>
<tr>
<td>Ghelmin</td>
<td>363.1</td>
<td>219.9</td>
<td>125.6</td>
<td>905</td>
<td>2.51</td>
<td>6.00</td>
</tr>
<tr>
<td>Herat</td>
<td>411.9</td>
<td>222.5</td>
<td>112.5</td>
<td>1737</td>
<td>4.83</td>
<td>11.03</td>
</tr>
<tr>
<td>Jalalabat</td>
<td>739.2</td>
<td>465.2</td>
<td>110.3</td>
<td>1409</td>
<td>3.91</td>
<td>8.40</td>
</tr>
<tr>
<td>Kabul Airport</td>
<td>547.8</td>
<td>316.0</td>
<td>164.9</td>
<td>1173</td>
<td>3.26</td>
<td>7.57</td>
</tr>
<tr>
<td>Qalat</td>
<td>461.3</td>
<td>281.3</td>
<td>144.8</td>
<td>1574</td>
<td>3.57</td>
<td>8.13</td>
</tr>
<tr>
<td>Kandahar Air</td>
<td>311.4</td>
<td>161.4</td>
<td>57.3</td>
<td>1644</td>
<td>4.57</td>
<td>8.27</td>
</tr>
<tr>
<td>Karizimir</td>
<td>365.7</td>
<td>249.9</td>
<td>206.2</td>
<td>1205</td>
<td>3.35</td>
<td>6.37</td>
</tr>
<tr>
<td>Khost</td>
<td>560.8</td>
<td>336.0</td>
<td>193.0</td>
<td>1285</td>
<td>3.57</td>
<td>8.13</td>
</tr>
<tr>
<td>Kunduz</td>
<td>468.9</td>
<td>251.3</td>
<td>117.2</td>
<td>1173</td>
<td>3.26</td>
<td>7.57</td>
</tr>
<tr>
<td>Laghman</td>
<td>429.3</td>
<td>227.4</td>
<td>168.0</td>
<td>695</td>
<td>1.93</td>
<td>4.33</td>
</tr>
<tr>
<td>Lal</td>
<td>372.2</td>
<td>222.0</td>
<td>101.4</td>
<td>1376</td>
<td>3.82</td>
<td>8.47</td>
</tr>
<tr>
<td>Logar</td>
<td>582.1</td>
<td>353.6</td>
<td>200.3</td>
<td>1202</td>
<td>3.34</td>
<td>7.20</td>
</tr>
<tr>
<td>Mazar-i Sharif</td>
<td>451.1</td>
<td>239.5</td>
<td>49.3</td>
<td>101.4</td>
<td>2.65</td>
<td>5.77</td>
</tr>
<tr>
<td>Maimana</td>
<td>379.1</td>
<td>189.1</td>
<td>87.4</td>
<td>1376</td>
<td>3.82</td>
<td>8.47</td>
</tr>
<tr>
<td>Moqr</td>
<td>440.1</td>
<td>284.8</td>
<td>44.4</td>
<td>1202</td>
<td>3.34</td>
<td>7.20</td>
</tr>
<tr>
<td>North Salang</td>
<td>1450.6</td>
<td>1018.5</td>
<td>376.5</td>
<td>1202</td>
<td>3.34</td>
<td>7.20</td>
</tr>
<tr>
<td>Paghman</td>
<td>620.7</td>
<td>419.6</td>
<td>223.7</td>
<td>1090</td>
<td>3.03</td>
<td>6.10</td>
</tr>
<tr>
<td>Panjao</td>
<td>440.1</td>
<td>284.8</td>
<td>44.4</td>
<td>1202</td>
<td>3.34</td>
<td>7.20</td>
</tr>
<tr>
<td>Qaqis</td>
<td>450.5</td>
<td>344.8</td>
<td>210.9</td>
<td>1090</td>
<td>3.03</td>
<td>6.10</td>
</tr>
<tr>
<td>Shabrak</td>
<td>417.0</td>
<td>276.1</td>
<td>60.3</td>
<td>1090</td>
<td>3.03</td>
<td>6.10</td>
</tr>
<tr>
<td>Shebirgha</td>
<td>434.6</td>
<td>231.0</td>
<td>116.5</td>
<td>1364</td>
<td>3.79</td>
<td>7.90</td>
</tr>
<tr>
<td>South Salang</td>
<td>1354.0</td>
<td>1023.3</td>
<td>677.1</td>
<td>1364</td>
<td>3.79</td>
<td>7.90</td>
</tr>
</tbody>
</table>

* ETP/Day Max month: July, except Khost and Jalalabad: June
* ETP/Day Min month: December; Italic numbers: January and Qadis station: February

Source: Department of Meteorology, Department of Transport and Tourism. The data were entered by FAO Agro-meteorology department in Kabul under the supervision of Rabah Lekhal, FAO Agro-meteorologist.
Map 1
Locations of 31 selected Historical Stations for which climatic data was made available

Legend
- Meteorological Station
- Waterbodies

Source: Department of Meteorology

Note:
The boundaries and names on this map do not imply official endorsement or acceptance by the United Nations.

For further information contact AIMS
E-mail: info@ains.org.af
5. Indigenous Knowledge on Weather Conditions

Afghan indigenous knowledge on weather conditions has divided the climatic patterns during winter into two sub-seasons. The first sub-season called Chel-i Buzurg (literally translated as the big 40s) are the 40 days from 21st December to the 31st January characterized with a cold winter climate (figure 3). The second sub-season called Chel-i Khord (literally the small 40s) are the 20 days from the 1st to the 20th February when weather conditions are milder but with some cold spells. After Chel-i Khord, the weather stabilizes and the temperature is warming up steadily. In that period (21st February), the spring climate is already set in the low-land areas throughout Afghanistan, while it is delayed by one month or so at 2,000 meters elevation (and by two months at 3,500 m elevation).

As a general pattern, snow and rainfall occurs during the first part of Chel-i Buzurg. Precipitations in that period are generally gentle and believed to be important for replenishing aquifers. After a first wave of rain/snowfall during the Chel-i Buzurg, it is locally observed that the rainfall reduces or stops for 5-7 weeks and starts again in spring time toward the end of February as the spring season establishes. The shape of the clouds changes from stratiform to cumuliform. The second rainfalls (spring) are generally more erratic but heavier and pose the risk of localized floods. In areas where dams have been built, the surface water from these spring rainfalls are retained and used to irrigate gently crops in summer. While in other areas, the water is mostly lost (from an agronomic point of view). It is also in spring that hailstorms can occur, causing localized crop damages (see picture 5).

6. Rehabilitation of the (Agro-) Meteorological Network

The Government of Afghanistan once had an extensive meteorological network. According to information from the president of the Afghan Meteorological Service, they had at one time 200 climatic posts, 50 synoptic stations and 3 upper air recordings. This extensive network has been rendered inoperative during the two and half decades of war. The long term climatic data series of the Meteorological Service have been entered by FAO. The Annex I present climatic data of Afghanistan. In 2003, FAO, Afrane and ICARDA contributed to the rehabilitation of the agro-climatic network throughout Afghanistan. The map 2 presents the sites of (agro-) meteorological stations.

A (agro-) climatic stations network around the country is of great value mostly for:

1. Crop forecasting (rain-fed production)
2. Rangeland and pastureland monitoring
3. Satellite imagery ground-truthing for various natural resources monitoring models
4. Runoff forecasting system when used in conjunction with hydrological data
5. Agriculture research programs

18 French NGO.
19 MWP notes that meteorological data and forecasts are very useful in establishing runoff forecasting systems for improving reservoir operation for hydropower and irrigation purposes. Indeed, in order to operate existing and future reservoirs more optimally it would be very useful to establish a model for runoff forecasting based on climate data from locations like Salang, as well as snow storage assessments based on aerial photos, satellite images or direct measurements. With a functioning forecasting system reservoirs such as Bandi Naghlu could be operated with smaller margins for flood storage and power production could therefore be increased. Government of Afghanistan, MWP, “Power Sector Master Plan Update, Draft Final Report”, report prepared by Norconsult-Norplan for MWP (Ministry of Water and Power), October 2003.
II. RIVERS REGIME

7. Rain/snow fed rivers
Most of the rivers flow in Afghanistan depends on the success of annual rain/snowfalls. The maps 3, 4 and 5 illustrate snow cover extend in Afghanistan at different period of the year (winter, early summer and autumn). When snow begins to melt in late winter and spring, the rivers rise. The Rivers in Afghanistan generally have a peak of flow at the end of the winter/spring and a minimum flow in summer/autumn (graphs 3, 4 and 5 and pictures 6, 7 and 8). In many instances, minimum precipitation means drying up, or reduction of a river to a series of isolated pools in the stream bed in summer and autumn/early winter. Also, there are myriads of seasonal stream beds carrying water only for few hours when torrential rains may occur in late winter/early spring and cause flash floods.

In many instances, the period when rivers carry water is shortened by 1 or 2 months as compared to natural flow due to human interventions for irrigation. In some cases, the rivers length is considerably shortened and the water is totally used 50-200 km before the natural delta of the river in deserts 20 (see Northern and Western oases below).

In the South-East of Afghanistan, the rivers that drain water from the East of the Suleiman Mountains (Gomal and Shomal rivers) have their flow affected by the furthest influence of the monsoon rainfall in summer (graph 6). Being at a transition between the Indian sub-continent regime and the typical Afghan regime, these rivers have two maximum flows; one in January-March and a second one in July-September.

Graphs 3 and 4
Discharge of two rain/snow fed rivers, the Hari Rod and Farah Rod rivers. The Hari Rod discharge flow peaks in April/May and then the flow reduces rapidly close to nil from July onward. The Farah Rod peaks in March/April and then the flow reduces close to nil in July onward. The river flow in both the Farah Rod and Hari Rod slightly increase in winter during the planting season.

Graph 5 and Pictures 6, 7 and 8
Discharge of a rain/snow fed rivers, the Ghorband. The Ghorband water flow increases in March, peaks in April/May and reduces to a minimum in August onward. The picture shows the Ghorband river in Pul-i Matak in the Shomali plain (Jabulussaraj district) on the 11 May (top right; N35.09, E69.20, NW), 5 June (N35.09, E69.20, NW) and 27 August 2003 (bottom right; N35.09, E69.20, NW)

Graph 6
Discharge of a rain/snow fed rivers influenced by the Monsoon rains in summer, the Shamal. The Shamal discharge flow peaks first in March, then the flow reduces in May/June before a second peak in July when Monsoon rainfall waters Eastern Afghanistan.
8. **Snow/Glaciers fed rivers**

Few rivers in Afghanistan take their source from high altitude in the Pamir or Nuristan, where sizeable glaciers exist. Peaks above 5,550 meters are permanently snow covered (picture 9). The map 4, illustrates the snow cover on the 25th of May 2003. The image shows that it is in the North-Eastern mountains that sufficient snow is still available in May/June to sustain river flow throughout the summer. These rivers, namely the Amu Darya, the Kokcha, the Kunar and, to a lesser extent, the Alingar and Panjshir rivers, sustain a good flow of water in summer months due to melting glaciers during the hot season. They have a minimal flow in winter when it freezes and a maximal flow in summer when snow and glaciers melt (Graph 7 and 8). The glaciers represent an important ecological asset as it stabilizes water supply within and between years. The persistence of snow and ice are closely related to the prevailing temperature and therefore glaciers in Afghanistan are at risk from global warming.

Graphs 7 and 8

Discharge of two snow/glacier fed rivers, the Kunar and Kokcha rivers. The water flow of the Kunar river increases in April, peaks in the summer month of July and decreases in September/October when the weather cools down in higher elevation. The lowest water flow occurs in the winter/spring months of December to March. The Kokcha river flow peaks in June/July and reduces in September/October to reach its lowest points in the winter months of December to January.

Picture 9

High mountains covered with glaciers in the Wakhan corridor, Badakhshan province, 2 September 2003 (N36.99, E72.45, S)
Map 3
MODIS surface reflectance mosaic satellite image showing the snow cover extend (white colour) in winter on the 27th of December 2002. November/December/January is the planting time for the first winter crops in low and mid elevation land. The river basin (dark blue lines) and the watershed (light blue lines) delineated for the Atlas have been overlaid on the satellite image.

Map 4
MODIS surface reflectance mosaic satellite image showing the snow cover extend (white colour) early summer on the 25th of May 2003. April/May/June is the period with maximum river discharge in Afghanistan. It is also the harvesting time for the first crop and the beginning of planting for the second/summer crops in low and mid elevation land. Note that the main areas still cover with snow are the North-Eastern part of Afghanistan, feeding snow/glacier fed rivers along which double cropping is generally practiced thanks to good water availability for summer crops. The dark blue lines show the boundaries of the river basins and the light blue line shows the watersheds. The river basin (dark blue lines) and the watershed (light blue lines) delineated for the Atlas have been overlaid on the satellite image.

Map 5
MODIS surface reflectance mosaic satellite image showing the snow cover extend (white colour) early summer on the 30th September 2003. September/October is the period with minimum snow cover and minimum river discharge for show/rain-fed rivers in Afghanistan. It is also the harvesting period for the first crops in the Highlands and the second crops in low and mid elevation land. The dark blue lines show the boundaries of the river basins and the light blue line shows the watersheds. The river basin (dark blue lines) and the watershed (light blue lines) delineated for the Atlas have been overlaid on the satellite image.

Information on MODIS Products
The MODIS surface reflectance mosaic -MOD09A1- image is a sample of the Level 3, 8-day composite of 500m Level 2G Surface Reflectance bands 1 (red), 4 (green) and 3 (blue). This product is computed from the MODIS Level 1B land bands 1-7. The 8-Day 500m product (MOD09A1) is an estimate of the surface spectral reflectance for each band as it would have been measured at ground level if there were no atmospheric scattering or absorption. This is achieved by applying a correction scheme to compensate for the effects of atmospheric gases, aerosols, and thin cirrus clouds. MOD09A1 is generated with input from Level 2G Surface Reflectance, Observation Pointers, and Geolocation Angles at each resolution. For more information, see http://lpdaac2.usgs.gov/modis/mod09a1v4.asp

The MODIS surface reflectance mosaic images (maps 3, 4 and 5) presented here are a courtesy of USGS-FEWS/NET for the Atlas. The maps have been processed by Michael E. Budde.
III. WATER RESOURCES IN AFGHANISTAN

9. Water Resources Overview

Natural storage of water in the form of winter precipitation (snow) at elevation above 2,000 meters represents 80% of Afghanistan’s water resources (excluding fossil ground water). The amount of water received in these areas through precipitation is estimated to be in the order of 150,000 million m³. The rest of the country receives only 30,000 million m³ annually through rainfall resulting in a total amount of 180,000 million m³ for the whole country (FAO, 1996)\(^{21}\).

The total annual surface water volume of 84,000 million m³ (see table 2), which corresponds to approximately 47% of total precipitation is shared with Afghanistan’s neighbouring countries. Considering an estimated water use of 65% inside the country, approximately 55,000 million m³ of surface water would be used in Afghanistan\(^{22}\). Surface waters in Afghanistan compare favourably with Iran and Central Asian republics, as the surface water per head in Afghanistan is estimated at 2’480 m³/year (Iran: 1,430 m³/head/year). Water catchments areas in Afghanistan are vast and settlements are generally concentrated along valley floor irrigation areas or river deltas opening in plain desert areas. Afghanistan has only 34 inhabitants per square kilometre\(^{23}\). Surface water is still largely underused.

According to the UN Commission for Asia and the Far East (1961)\(^{24}\) there are about 50,000 million m³ of runoff each year of which about 30,000 million m³ could be impounded. It should be noted that these figures were produced before the construction of the Bandi Naghlu and Darunta dams on the Kabul river. Water availability for irrigation purposes is a function of the seasonal variation of stream flow where no water is stored in reservoirs; too much water is flowing in spring due to snow melt and heavy rainfall, and often too little water in late summer when rivers discharge is low and crop water requirement is still high. As a result, the influence of the coverage and thickness of the snow cap is significant on crop results (see satellite images in map 3 to 5). Exceptionally good spring rainfall can compensate low snow cover in lowland irrigation farming.

The annual volume of water used for drinking purposes (humans and animals) is no more than 200 million m³. Adopting a rate of 10,000 m³/ha for a total irrigated area of about 2.4 million ha\(^{25}\), the annual volume of water used for irrigation purposes is estimated to be in the order of

\(^{22}\) FAO assumed a 50 % share of the annual volume available from Panj river (18’200 million m³), 30% from Kabul river (6’970 million m³), Murgahab (450 million m³) and Hari Rod (530 million m³) and 300 m³ from the rivers in the southern and south-eastern basin. See Klemm, W., Ibid., 1996. The population of Afghanistan is estimated at 22.2 million.

\(^{25}\) In 2003, FAO estimated that 1.79 million hectares of land was cultivated with a first crop - excluding vineyards, orchards and other trees and 0.25 million hectares of second crops (rice and maize). Pulses represent approximately 0.1 million hectares. FAO estimates that 10% of the total irrigated land is orchards. Therefore, an estimated total of 2.4 million hectares have been irrigated in 2003. Favre, Raphy; Fitzherbert, Anthony; Escobedo, Javier; “MAAH/MMRD/FAO/WFP National Crop Output Assessment. First Phase. 10th May to 5th June 2003”, FAO, 25th July 2003; FAO/WFP Food and Crops Supply Assessment, 13 August 2003; FAO/WFP Food and Crops Supply
24,000 million m³. Therefore, irrigation is chiefly the main user of water in Afghanistan with an estimated 99%.

Table 2
Mean Annual Volume of River Discharge by River Basin.
Based on MIRWE hydrological data (FAO, 1996).

<table>
<thead>
<tr>
<th>RIVER BASIN</th>
<th>RIVER NAME</th>
<th>RIVER REGIME</th>
<th>MEAN ANNUAL VOL. (m³)</th>
<th>% TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amu Darya</td>
<td>Ab-i Panja*</td>
<td>Snow/glacier fed</td>
<td>36,420</td>
<td>43</td>
</tr>
<tr>
<td>Amu Darya</td>
<td>Kokcha</td>
<td>Snow/glacier fed</td>
<td>5,700</td>
<td>7</td>
</tr>
<tr>
<td>Amu Darya</td>
<td>Kunduz</td>
<td>Rain/snow fed</td>
<td>6,000</td>
<td>7</td>
</tr>
<tr>
<td>TOTAL Amu Darya</td>
<td></td>
<td></td>
<td>48,120</td>
<td>57</td>
</tr>
<tr>
<td>Kabul (Indus)</td>
<td>Gomal</td>
<td>Rain/snow fed</td>
<td>350</td>
<td>0</td>
</tr>
<tr>
<td>Kabul (Indus)</td>
<td>Margo, Shamal, Kuram</td>
<td>Rain/snow fed</td>
<td>400</td>
<td>0</td>
</tr>
<tr>
<td>Kabul (Indus)</td>
<td>Panjshir</td>
<td>Rain/snow fed</td>
<td>3,130</td>
<td>4</td>
</tr>
<tr>
<td>Kabul (Indus)</td>
<td>Kunar**</td>
<td>Snow/glacier fed</td>
<td>15,250</td>
<td>18</td>
</tr>
<tr>
<td>Kabul (Indus)</td>
<td>Kabul (without Panjshir & Kunar)</td>
<td>Rain/snow fed</td>
<td>2,520</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL Kabul (Indus)</td>
<td></td>
<td></td>
<td>21,650</td>
<td>26</td>
</tr>
<tr>
<td>Northern Basin</td>
<td>Tashkurgan (Khulm)</td>
<td>Rain/snow fed</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Northern Basin</td>
<td>Balkhab</td>
<td>Rain/snow fed</td>
<td>1,650</td>
<td>2</td>
</tr>
<tr>
<td>Northern Basin</td>
<td>Ab-i Safid</td>
<td>Rain/snow fed</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>Northern Basin</td>
<td>Shirin Tagab</td>
<td>Rain/snow fed</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Northern Basin</td>
<td>Amu Darya desert</td>
<td>Rain/snow fed</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL Northern</td>
<td></td>
<td></td>
<td>1,880</td>
<td>2</td>
</tr>
<tr>
<td>Hilmand Basin</td>
<td>Farah Rod</td>
<td>Rain/snow fed</td>
<td>1,250</td>
<td>1</td>
</tr>
<tr>
<td>Hilmand Basin</td>
<td>Adraskan Rod (Harut Rod)</td>
<td>Rain/snow fed</td>
<td>210</td>
<td>0</td>
</tr>
<tr>
<td>Hilmand Basin</td>
<td>Khuspas Rod</td>
<td>Rain/snow fed</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>Hilmand Basin</td>
<td>Khash Rod</td>
<td>Rain/snow fed</td>
<td>170</td>
<td>0</td>
</tr>
<tr>
<td>Hilmand Basin</td>
<td>Kaj Rod</td>
<td>Rain/snow fed</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Hilmand Basin</td>
<td>Ghazni Rod</td>
<td>Rain/snow fed</td>
<td>350</td>
<td>0</td>
</tr>
<tr>
<td>Hilmand Basin</td>
<td>Hilmand at Kajaki dam</td>
<td>Rain/snow fed</td>
<td>6,000</td>
<td>7</td>
</tr>
<tr>
<td>Hilmand Basin</td>
<td>Musa Qala</td>
<td>Rain/snow fed</td>
<td>220</td>
<td>0</td>
</tr>
<tr>
<td>Hilmand Basin</td>
<td>Arghandab</td>
<td>Rain/snow fed</td>
<td>820</td>
<td>1</td>
</tr>
<tr>
<td>Hilmand Basin</td>
<td>Lower Hilmand</td>
<td>Rain/snow fed</td>
<td>110</td>
<td>0</td>
</tr>
<tr>
<td>Hilmand Basin</td>
<td>Southern river basin</td>
<td>Rain/snow fed</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL Hilmand</td>
<td></td>
<td></td>
<td>9,300</td>
<td>11</td>
</tr>
<tr>
<td>Harirod-Murghab</td>
<td>Murghab</td>
<td>Rain/snow fed</td>
<td>1,350</td>
<td>2</td>
</tr>
<tr>
<td>Harirod-Murghab</td>
<td>Kashan and Kushk Rod</td>
<td>Rain/snow fed</td>
<td>110</td>
<td>0</td>
</tr>
<tr>
<td>Harirod-Murghab</td>
<td>Hari Rod river</td>
<td>Rain/snow fed</td>
<td>1,600</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL Harirod-Murghab</td>
<td></td>
<td></td>
<td>3,060</td>
<td>4</td>
</tr>
<tr>
<td>Grand Total</td>
<td></td>
<td></td>
<td>84,010</td>
<td>100</td>
</tr>
</tbody>
</table>

* + 29’000 m³ m³ in Tajikistan; ** + 14’000 m³ m³ in Pakistan

The government of Afghanistan has divided the irrigated land into four classes according to the origin of the irrigation water: Rivers and Streams (84.6%), Springs (7.9%), kareze (7.0%), and shallow and deep Wells (0.5%). Table 3 presents the breakdown in various provinces according to the 1980 Year Book Statistics of the government of Afghanistan.

26 Klemm, Ibid., FAO, 1996.
27 These statistics are indicative and intended for general description only.
Table 3
Irrigated Area by Surface Water and Alluvial Ground Water (1967-68)*

<table>
<thead>
<tr>
<th>No.</th>
<th>Province</th>
<th>Surface Water</th>
<th>Alluvial Ground Water</th>
<th>Total</th>
<th>Irrigated area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Rivers & Streams</td>
<td>Springs</td>
<td>karez</td>
<td>Shallow & half deep wells</td>
</tr>
<tr>
<td>1</td>
<td>Badakhshan</td>
<td>57.83</td>
<td>3.84</td>
<td>-</td>
<td>0.09</td>
</tr>
<tr>
<td>2</td>
<td>Badghis</td>
<td>20.25</td>
<td>8.66</td>
<td>4.39</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Baghlan</td>
<td>80.02</td>
<td>0.16</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Balkh</td>
<td>224.25</td>
<td>0.20</td>
<td>-</td>
<td>0.05</td>
</tr>
<tr>
<td>5</td>
<td>Bamyan</td>
<td>17.26</td>
<td>5.35</td>
<td>-</td>
<td>0.54</td>
</tr>
<tr>
<td>6</td>
<td>Farah</td>
<td>88.84</td>
<td>7.35</td>
<td>28.48</td>
<td>1.06</td>
</tr>
<tr>
<td>7</td>
<td>Faryab</td>
<td>116.70</td>
<td>4.25</td>
<td>0.38</td>
<td>0.27</td>
</tr>
<tr>
<td>8</td>
<td>Ghazni</td>
<td>74.32</td>
<td>14.53</td>
<td>23.96</td>
<td>4.68</td>
</tr>
<tr>
<td>9</td>
<td>Ghor</td>
<td>55.92</td>
<td>15.99</td>
<td>0.71</td>
<td>0.24</td>
</tr>
<tr>
<td>10</td>
<td>Hilmand</td>
<td>135.44</td>
<td>4.32</td>
<td>22.83</td>
<td>0.13</td>
</tr>
<tr>
<td>11</td>
<td>Herat</td>
<td>159.85</td>
<td>0.83</td>
<td>1.65</td>
<td>1.37</td>
</tr>
<tr>
<td>12</td>
<td>Jowzjan</td>
<td>182.42</td>
<td>2.06</td>
<td>0.02</td>
<td>0.10</td>
</tr>
<tr>
<td>13</td>
<td>Kabul</td>
<td>38.88</td>
<td>3.30</td>
<td>14.76</td>
<td>0.66</td>
</tr>
<tr>
<td>14</td>
<td>Kandahar</td>
<td>96.05</td>
<td>5.31</td>
<td>15.86</td>
<td>0.70</td>
</tr>
<tr>
<td>15</td>
<td>Kunar</td>
<td>22.59</td>
<td>0.72</td>
<td>-</td>
<td>0.01</td>
</tr>
<tr>
<td>16</td>
<td>Kunduz</td>
<td>209.05</td>
<td>-</td>
<td>-</td>
<td>0.54</td>
</tr>
<tr>
<td>17</td>
<td>Laghman</td>
<td>23.52</td>
<td>0.06</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>Logar</td>
<td>21.86</td>
<td>0.17</td>
<td>4.38</td>
<td>0.24</td>
</tr>
<tr>
<td>19</td>
<td>Nangarhar</td>
<td>28.52</td>
<td>4.36</td>
<td>9.45</td>
<td>0.01</td>
</tr>
<tr>
<td>20</td>
<td>Nimroz</td>
<td>59.74</td>
<td>-</td>
<td>0.32</td>
<td>0.24</td>
</tr>
<tr>
<td>21</td>
<td>Paktia</td>
<td>45.74</td>
<td>4.68</td>
<td>5.86</td>
<td>0.07</td>
</tr>
<tr>
<td>22</td>
<td>Parwan & Kapisa</td>
<td>62.77</td>
<td>10.34</td>
<td>1.98</td>
<td>0.05</td>
</tr>
<tr>
<td>23</td>
<td>Samangan</td>
<td>37.61</td>
<td>5.84</td>
<td>0.41</td>
<td>0.47</td>
</tr>
<tr>
<td>24</td>
<td>Takhar</td>
<td>53.55</td>
<td>8.15</td>
<td>-</td>
<td>0.36</td>
</tr>
<tr>
<td>25</td>
<td>Uruzgan</td>
<td>52.67</td>
<td>56.28</td>
<td>17.55</td>
<td>0.08</td>
</tr>
<tr>
<td>26</td>
<td>Wardak</td>
<td>14.93</td>
<td>8.69</td>
<td>1.98</td>
<td>-</td>
</tr>
<tr>
<td>27</td>
<td>Zabul</td>
<td>37.67</td>
<td>11.99</td>
<td>12.78</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>2'018.25</td>
<td>187.43</td>
<td>167.75</td>
<td>12.06</td>
</tr>
<tr>
<td></td>
<td>Percentage %</td>
<td>84.6</td>
<td>7.9</td>
<td>7.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

* Year book statistics of the government of Afghanistan, year of 1980

Assuming a conservative infiltration ratio of 10% from the total precipitation, the annual ground water recharge in normal years would amount at about 18,000 million m³. Ground water usually exists in quaternary aquifers along all major river valleys where infiltration of surface water is high. Ground water is usually abundant in quaternary aquifers along all major river valleys where infiltration of surface water is high. Ground water quality is generally good but varies from place to place. In lower reaches of river valleys, ground water is frequently saline or brackish and not usable for either drinking or irrigation purposes. Considering the 1980s statistics (see table 3) of 367,000 hectares (or 15.4%) irrigated from alluvial ground water aquifers with karez, springs and deep/shallow wells, the total ground water extraction amounts to some 3,670 million m³.

28 Data on recently constructed deep and shallow wells for irrigation and reduction of irrigated area with karez and springs due to the drought and water extraction by deep wells are not available.
10. Hydrological Stations Network

Hydrological analyses are based on river discharge measurements that began in Afghanistan in the mid 1940s across a few sites. The number of sites increased steadily over the years until the late 1970s. Measurements were discontinued soon after the Soviet invasion of Afghanistan. No recordings have been made since September 1980, and the river gauging stations are not operable. Until 1978, Afghanistan had a network of approximately 160 river gauging stations. The map below shows the locations of the hydrometric stations. Continuous recording of hydrological data is a prerequisite for efficient and reliable planning of irrigation program, hydropower and water/natural resources management. The World Bank is intending to re-establish the hydrometric network of Afghanistan.

The map 6 shows that the Panj river and Shewa river in the North-East, the Gomal river in the East, the Khuspas Rod and Pishin Lora Rod in the South were not included in the hydrological network of Afghanistan.

11. Use of Water Resources for Developing Afghanistan or the Development Dilemma

Formally organized large-scale irrigation systems were developed in Afghanistan between the 1950s and 1970s (see table 4). By the late 1970s three large-scale modern irrigation systems had been built and were in operation: the Hilmand-Arghandab schemes in the southwest (Kandahar and Hilmand provinces), the Ghaziabad farms near Jalalabad in the east (Nagarhar province), and the Kunduz-Khanabad scheme in the northeast (Kunduz, Baghlan and Takhar provinces). At the time, their operation and maintenance was highly structured. After twenty-two years of conflict and the almost total breakdown of formal government institutions only part of these schemes are operational.

Currently, Afghanistan cannot meet its energy demand even though present consumption is extremely low by world standards. The Ministry of Water and Power (MWP) anticipates that the energy requirements of Afghanistan in 2020 will increase between 2.5 to 5 times depending on the regions. The increase in energy requirements will be partly filled by further developing the hydro-power capacity of the country. The map 7 shows the current status of hydro-power stations and the proposed development by the MWP Draft Master Plan (projection up to 2020). The table 5 summarizes the hydro-power projects of the draft Power Sector Master Plan.

Afghanistan’s economic rehabilitation will require an increase use of water resources for irrigation and hydro-power purposes. However, UNESCO highlight the dilemma on increased use of water resources for Afghanistan development; in order to develop its own water resources, Afghanistan will need to establish regional co-operation with the downstream countries of Tajikistan, Turkmenistan, Uzbekistan, Iran and Pakistan. Further studies will be needed to determine whether the Kabul, Hilmand and Amu Darya River projects can be realized without harming the interests of neighbouring countries.

http://portal.unesco.org/en/ev.php@URL_ID=13582&URL_DO=DO_TOPIC&URL_SECTION=201.html
<table>
<thead>
<tr>
<th>No</th>
<th>Name of schemes</th>
<th>Province</th>
<th>Area under Irrigation</th>
<th>Main structures</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hilmand & Arghandab project</td>
<td>Helman & Kandahar</td>
<td>103,000 Ha</td>
<td>Kajaki & Dhala Dams, Diversion of Boghra, Main canal of Boghra, Shahrawan, Shamalan, Darweshan and Baba Walee</td>
<td>Water flow managed by Government, Maintenance by NGOs</td>
</tr>
<tr>
<td>2</td>
<td>Sardeh</td>
<td>Ghazni</td>
<td>15,000 Ha</td>
<td>Reservoir (164 m³), Left and right canal (15 m³)</td>
<td>Water flow managed by Government, Maintenance by NGOs</td>
</tr>
<tr>
<td>3</td>
<td>Parwan</td>
<td>Parwan & Kabul</td>
<td>24,800 Ha</td>
<td>Diversion, Main canal (27 m³), Eastern and Southern canals, Pumping station, Power House (2.4 Mega W),</td>
<td>Water flow managed by Government, Maintenance by NGOs</td>
</tr>
<tr>
<td>4</td>
<td>Nangarhar Irrigation system</td>
<td>Nangarhar</td>
<td>39,000 Ha</td>
<td>Darunta dam and Power station, Main canal Qmax=50m³, Pump station, State farms,</td>
<td>Water flow managed by Government, Maintenance by NGOs</td>
</tr>
<tr>
<td>5</td>
<td>Sang-i Mehr</td>
<td>Badakhshan</td>
<td>3,000 Ha</td>
<td>Intake and main canal Q=2,5m³,</td>
<td>Run by Community, Maintenance by NGOs</td>
</tr>
<tr>
<td>6</td>
<td>Kunduz-Khanabad</td>
<td>Kunduz</td>
<td>30,000 Ha</td>
<td>Diversion, left and right canal, regulators,</td>
<td>Not completed, not operational</td>
</tr>
<tr>
<td>7</td>
<td>Shahrawan</td>
<td>Takhar</td>
<td>40,000 Ha</td>
<td>Intake, main canal</td>
<td>Water flow managed by Government, Maintenance by NGOs</td>
</tr>
<tr>
<td>8</td>
<td>Gawargan</td>
<td>Baghlan</td>
<td>8,000 Ha</td>
<td>Intake, main canal</td>
<td>8’000 out of 20’000 ha currently cultivated Water flow managed by Government, Maintenance by NGOs</td>
</tr>
<tr>
<td>9</td>
<td>Kilagay</td>
<td>Baghlan</td>
<td>20,000 Ha</td>
<td>Intake, main canal</td>
<td>Water flow managed by Government, Maintenance by NGOs</td>
</tr>
<tr>
<td>10</td>
<td>Nahr-i-Shahi</td>
<td>Balkh</td>
<td>50,000 Ha</td>
<td>Diversion, main canal and division structures</td>
<td>Run by Government and Community</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>332,800 Ha</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>PROJECT</th>
<th>Province</th>
<th>District</th>
<th>River Basin</th>
<th>Watershed</th>
<th>Assessment required</th>
<th>Resettlement > 200 pers</th>
<th>Brief Description and Critical Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BAGHDARA</td>
<td>Parwan</td>
<td>Panjshir</td>
<td>Indus</td>
<td>Ghorband wa Panjshir</td>
<td>Full EIA</td>
<td>Yes</td>
<td>New 90 meters high meters long reservoir dam with a crest length of 125 m. Site is located 4 km downstream from Alekozi settlement. - Large resettlement component</td>
</tr>
<tr>
<td>2</td>
<td>SURUBI 2 & 3</td>
<td>Kabul</td>
<td>Surobi</td>
<td>Indus</td>
<td>Kabul</td>
<td>Full EIA</td>
<td>No</td>
<td>Development of the head between Surubi and Sarkando</td>
</tr>
<tr>
<td>3</td>
<td>KUNAR Alternative A</td>
<td>Kunar</td>
<td>Bar Kunar</td>
<td>Indus</td>
<td>Kunar</td>
<td>Full EIA</td>
<td>Yes</td>
<td>New 160 m high earth fill dam with a crest length of 1080 m. The site is located 7 km upstream of Asmar settlement. - Large resettlement component</td>
</tr>
<tr>
<td>4</td>
<td>KUNAR Alternative H</td>
<td>Kunar</td>
<td></td>
<td>Indus</td>
<td>Kunar</td>
<td>Full EIA</td>
<td>Yes</td>
<td>New 105 m high earth fill dam with a crest length of 670 m. The site located 22 km upstream of Asmar and 1 km below Chunek village.</td>
</tr>
<tr>
<td>5</td>
<td>GULBAHAR</td>
<td>Parwan</td>
<td>Panjshir</td>
<td>Indus</td>
<td>Panjshir</td>
<td>Full EIA</td>
<td>Yes</td>
<td>New 200 m high rock filled dam with a crest length of 173 m. The site is located 2 km North of Gulbahar at the entrance of the Panjshir valley. - Large resettlement component.</td>
</tr>
<tr>
<td>6</td>
<td>KAMA</td>
<td>Nangahrar</td>
<td>Kama</td>
<td>Indus</td>
<td>Kunar</td>
<td>Full EIA</td>
<td>Yes</td>
<td>New 5-6 m diversion weir from the river with a headrace channel of 16 km long. The site is located close on the Kunar river close to its confluence with the Kabul river.</td>
</tr>
<tr>
<td>7</td>
<td>KAJAKI (extension)</td>
<td>Hilmand</td>
<td>Kajaki</td>
<td>Hilmand-Sistan</td>
<td>Upper Hilmand</td>
<td>Full EIA</td>
<td>Yes</td>
<td>Installation of 11 m high radial gate in the spillway and increase the dam height by 2 m. Water availability for Iran and biodiversity in Sistan is to be considered.</td>
</tr>
<tr>
<td>8</td>
<td>OULUMBAGH</td>
<td>Uruzgan</td>
<td>Dihrawud</td>
<td>Hilmand-Sistan</td>
<td>Upper Hilmand</td>
<td>Full EIA</td>
<td>Yes</td>
<td>New 55 m high rock fill dam about 75 km upstream of Kajaki dam. The site is located near Olumbagh village. - Large resettlement component. Water availability for Iran and biodiversity in Sistan is to be considered.</td>
</tr>
<tr>
<td>9</td>
<td>KAMAL KHAN</td>
<td>Nimroz</td>
<td>Chahar Burjak</td>
<td>Hilmand-Sistan</td>
<td>Sistan Hilmand</td>
<td>Full EIA</td>
<td>No (?)</td>
<td>Completion of diversion dam on the Hilmand river to prevent water to the Gaod-i Zirreh lake in flood period through the Beyehan channel. Water availability for Iran and biodiversity in Sistan is to be considered.</td>
</tr>
<tr>
<td>10</td>
<td>KHANABAD</td>
<td>Kunduz</td>
<td>Khanabad</td>
<td>Amu Darya</td>
<td>Khanabad</td>
<td>Environment Review</td>
<td>No</td>
<td>Completion of the hydro-power dam located near Khanabad town. Possible conflict with irrigation requirements.</td>
</tr>
<tr>
<td>11</td>
<td>KILAGAY</td>
<td>Baghlan</td>
<td>Pul-i Khumri</td>
<td>Amu Darya</td>
<td>Kunduz</td>
<td>Full EIA</td>
<td>Yes</td>
<td>New earth fill dam upstream of Pul-i Khumri town. More study on irrigation impact required. Large resettlement component</td>
</tr>
<tr>
<td>12</td>
<td>UPPER AMU extension</td>
<td>Badakhshan</td>
<td>Amu Darya</td>
<td>Ab-i Panj</td>
<td>Full EIA</td>
<td>Yes</td>
<td>New 30 m high dam downstream of the confluence of the Panj and Vakhsir rivers (in Tajikistan). Large resettlement component. Water for downstream countries and the Aral Sea revitalization. Land covered in both Afghanistan and Tajikistan territory. Irrigated area to be defined.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>SALMA</td>
<td>Herat</td>
<td>Chest-i Sharif</td>
<td>Turkmen Oases</td>
<td>Hari Rod</td>
<td>Full EIA</td>
<td>Yes</td>
<td>New 104 m masonry dam with a crest length of 430 m. Excavation of the dam foundation had reached a relatively advanced stage, but foundation cleaning was not completed. No work on the dam or penstocks had started. Water availability for Iran and Turkmenistan is to be considered. No water treaties exists.</td>
</tr>
<tr>
<td>14</td>
<td>BAKISHABAD</td>
<td>Farah</td>
<td>Bala Buluk</td>
<td>Hilmand-Sistan</td>
<td>Farah Rod</td>
<td>Full EIA</td>
<td>No (?)</td>
<td>New 87 m high concrete buttress dam with a crest length of 265 m. Located 3 km below the village of Sangak. Water availability for Iran and Turkmenistan where no water treaties exists.</td>
</tr>
</tbody>
</table>
12. Water Bodies

There are very few lakes and marshland areas in Afghanistan. Because of their rarity, existing wetlands are particularly valuable for people as sources of water and other resources such as reeds, and as habitats for wetland species, notably for breeding and migrant water-birds. The wetland ecosystem of Afghanistan is created by rivers that have no natural outlet to the sea, and hence they drain into a series of depressions, which form large shallow saline lakes and marshes. The beds of these wetlands are constituted of the sediments transported by the rivers, which makes them the most biologically productive ecosystems in the country, and therefore constitute viable waterfowl habitats.

Of the seven wetlands in Afghanistan, the three considered by ornithologists as being of international importance for migrating and wintering waterfowls are Ab-i Istada and Dasht-i Nawur which are important habitats for migrating or wintering waders and ducks. They also support large breeding colonies of greater flamingos (*Phoenicopterus ruber*). In addition, Ab-i Istada has the distinction of being regularly visited by the entire migrating populations of the highly endangered Siberian crane (*Grus leucogeranus*). The third important wetland is the Kole Hashmat Khan on the outskirts of Kabul, which used to be rich in bird biodiversity, hosting a large number of ducks and coots during winters.

Beside these seven main wetlands, there are a number of small wetlands of environmental and recreational interest in various parts of Afghanistan. The FAO 1990/93 landcover Atlas did classify water-bodies and marchlands and these are reflected in the statistics by river basin and watershed (see part III and IV). The pictures 1, 10, 11 and 12 illustrate some of these small wetlands of Afghanistan.

Any further development of irrigation system on rivers that have no natural outlet to the sea may be at the expense of these delicate wetland ecosystems.

The Andkhoi salt lake is filling in winter/spring from water infiltrated in upper land and resurging in the low area of Andkhoi lake (elevation of 255 m above sea level). The water dries in summer and the salt dissolved from deep soil layers crystallized to be harvested in autumn. Faryab province, 17 May 2003 (N36.62, E65.05, NE)

Picture 10

Vegetation in saline soil condition near Andkhoi salt lake. Faryab, 17 May 2003 (N36.56, E64.99, NE)

Picture 11
Picture 12
Wetlands in Lal wa Sarjangal district (near Lal district center) of Ghor province. 2 June 2003
(N34.47, 66.24, NE)
V. A WORD ON WATERSHED MANAGEMENT

“Watershed management in its truest form is the conservation management of the soil-plant-water resources of a catchment in order to benefit man. It involves managing the land and human resources of the drainage in a manner which sustains adequate level of water, soil, food and fibre production.” 33 This is reflected in the UNCED Agenda 21, Chapter 18: Protection of the Quality and Supply of Freshwater Resources, which calls for integrated water resources management, including the integration of land and water-related aspects to be carried out at the level of the catchment, basin or sub-basin.

“The watershed part of watershed management implies management of these resources, to the extent possible, within a defined physiological boundary within which it is possible to identify and monitor the components (e.g. inputs, storage, and outflows) of the watershed system; e.g. the hydrologic cycle. However, from a land management perspective, these physical boundaries are considered to be simply a topographic demarcation within political and administrative boundaries that usually overlay a series of watersheds” 34. Wolf (2002) 35 notes that the fact that water and natural resource issues manifest themselves within basins, while analyses that are often based on country boundaries, can lead to fundamental misunderstandings.

This is fully verified in Afghanistan, as watersheds do not necessarily correspond to administrative boundaries. However, at micro-level, preliminary observations on ‘manteqa’ or fundamental social organization of rural Afghanistan below the district level tend to show that there is some degree of overlapping between micro-watersheds (valley systems) 36. This suggests a positive convergence of social and geographical factors for the development of watershed management approach. Indeed, ‘integrated watershed management through people’s participation’ has become widely accepted as the approach which insures sound sustainable natural resources management and a better agricultural economy for upland inhabitants as well as people living in downstream areas”. However, yet neither the watershed, nor the inner sub-distRICT social organization of the ‘manteqa’ is recognized in Afghanistan.

“Degradation of natural resources is considered to be the largest constraint to sustainable agricultural development in most of the developing countries”. 37 Afghanistan is no exception, and the last two and half decades of war and failed governance has had a huge and in parts irreversible negative impact on natural resources. Massive destruction of forests, degradation of rangeland through fuel collection, encroachment of pastureland for rain-fed cultivation have resulted in soil erosion, increased incidence of flash flooding and low biomass production on rangeland. Saba (2001) considers that “Afghanistan is in a state of severe environmental crisis, unprecedented in its history”. 38 The pictures 13 to 36 illustrate some of the main environmental degradations and watershed management issues in Afghanistan.

Water conservation and harvesting through rehabilitation of land/soil cover (pasture, forest) and construction of water management infrastructures such as check dams, contour bunds, etc. are necessary to conserve water and enhance ground-water recharge in all watersheds. Sheladia Associate Ltd. notes that “global experience has demonstrated in a wide range of arid environments similar to Afghanistan that water harvesting measures, combined with pasture restoration and reforestation can a) improve water management, b) increase water available for drinking, livestock and for irrigated farming, c) strengthen livelihoods and d) reduce their vulnerability”. 39

Pictures 13 and 14
Depredated land cover is a major problem of water resources management in Afghanistan. The picture on the left shows soil erosion caused by surface water in a rain-fed field (N35.92, E64.69, SE). Marks of surface soil erosion are erased when the land is ploughed (picture on the right). Almar district, Faryab province, 19 May 2003 (N35.91, E64.68, SE)

Rangeland Management is an important part of watershed management as rangeland represents 45% of the national territory (based on FAO Landcover Atlas) and livestock rearing as well as nomadic movements are essential component of rangeland management. Dupree in 1973 described the nomadic movements and grazing patterns. These patterns were established under the rule of the Afghan King Abdur Rahman in the late 19th century who, after submitting the Central Highlands and the Northern Khanates, transmigrated Pashtun into the Northern and Central areas, thereby ensuring himself of control over these regions. It was at this time that the Central and Northern grazing areas were opened up to Pashtun pastoralists or ‘kuchi’. Over the years, through the monarchy period of Afghanistan, documents were handed to ‘kuchi’, giving them rights of pasture or agricultural land in different areas. In some cases, this was land already used by other people which caused conflict, whereas in other areas the lands were either unused or shared amicably. The migratory patterns presented by Dupree have been disrupted during the war and particularly with the independence of various ethnic groups from the central government. The nomadic migration patterns are renegotiated at local level every season based on the socio-political power balance of Afghanistan. Furthermore, the tumultuous History of Afghanistan has resulted in a situation of intricate land tenure insecurity across the country leading to inadequate management of natural resources.

Picture 15
Pastureland encroachment for rain-fed cultivation is causing widespread changes in soil covers in most parts of Afghanistan. Here in Dasht-i Laili, Jawzjan, 25 March 2003 (N36.72, 65.68, N)

Pictures 16 and 17
Pistachio forests have been dramatically destroyed during the past 2 and half decades. However, where pistachio trees have not been uprooted, rejuvenation is possible provided the rangeland is protected. On the left, hills that were covered with pistachio forest in recent years. On the right, rejuvenation from pistachio stock in the same location (N34.96, E63.07, S). Qala-i Naw district, Badghis province, 22 May 2003

Pictures 18, 19 and 20
Demand for fuel wood for cooking and heating has increased as a result of widespread livestock decimation during the past drought. The practice of uprooting of plants and enlargement of species collected due to increase fuel wood demand aggravates land cover degradation which in turn increases the time necessary for fuel wood collection. Below, storing fuel and fodder material for winter in Sherghan, Badakhshan, 4 September 2003 (N37.33, E71.05, NW)
Flash flooding is a direct consequence of land cover degradation. There is a general consensus amongst Afghan farmers interviewed in 2003 that flash floods have increased in the past two and half decades. Flash flood in Mazar-i Sharif (Balkh province) in Spring 2003. 26 March 2003 (N36.65, E67.07, NE)

Degraded forest above the Qorawa (left) and Zamamkor (right) village close to the entrance of the Panjshir valley. Parwan province, 27 August 2003 (N35.21, E69.31, S)
Pictures 24, 25 and 26

Isolated trees testify to the presence of forests in the past. There is the possibility of re-forestation in many parts of Afghanistan. On the left, in Jurm district, Badakhshan province, August 2003 (N36.67, E70.85, E). On the right, isolated *Pistacia khinjuk* along the Hari Rod river. Cheshti Sharif Herat province, 1 June 2003 (N34.36, E64.19, N). Sometimes trees can be seen in un-expected locations such as desert areas in southern Afghanistan.

Below are tamaris trees traditionally planted on graveyards in Qala-i Qah district, Farah. 26 May 2003 (N32.30, E61.65, S)
Most of the plants growing on the Afghan rangeland are annual. They offer only a limited top soil protection and have a low biomass production as annual grasses explore only few centimetres of the top soil. Perennial fodder grass with deep rooting system such as alfalfa are of high interest as they explore deep layers of the soil, they have a strong soil stabilization effect and thus produce more biomass. Farmers in Lal district of Ghor province have started seeding Lucerne on the rangeland with success. The alfalfa on the rangeland below reportedly continued to grow during the 3-4 years of recent drought. Lal wa Sargangal district, Ghor province, 2 June 2003 (N34.49, E66.68, SE)

Meandering rivers are beautiful for the eyes of visitors however it increases losses of water by evaporation and potential farming land remains unavailable. River channelling along with a delineation of protected areas would allow to achieve both environmental (stabilization of wetlands, forests) and economic objectives (increase of land under cultivation). Here in Chaman valley, Yakaolang district, Bamyan 3 June 2003 (Picture 29, N34.73, E66.87, W; Pictures 30, N34.73, E66.88, E)
Along meandering rivers, one finds bushes/forests, pastureland or simply gravel. From the top to the left:
Kokcha river (Jangal-i Marzu forest) in Kuran wa Munjan district, 30 August 2003 (N36.03, E70.72, SE);
pastureland between meanders of the Warduj river (N36.65, E71.35, S); gravel along the Warduj river and
alluvial cone created by a steam in Ishkashim, 1 September 2003 (N36.66, E71.37, SW and N36.67, E71.38, E).
Below, panoramic view of the Kokcha river at below the junction of the Anjuman and Munjan river, Kuran wa
Munjan district, 31 August 2003 (N36.04, E70.72, NE). River engineering training material has been developed
for Afghan engineers by SDC and UNJLC. 45

Building concrete irrigation channels intakes along meandering rivers is uneasy. Therefore, most of the intakes in Afghanistan are traditional and need to be rehabilitated every year after the peak of water flow. The amount of water available to a certain population group depends on the maintenance of the intake. Rehabilitation of intakes by humanitarian agencies may change the water availability between population groups within the same watershed. Here, traditional intake irrigation canal using local material in Doshi. Baghlan province, 12 September 2003 (N35.60, E68.69, NW)
PART II

METHODOLOGY AND TERMINOLOGY
FAO conducted extensive field verification of watershed boundaries. Here, bridge over the Kokcha river in Kuran wa Munjan, 30 August 2003 (N35.99, E70.59, E)
I. WATER CATCHMENTS TERMINOLOGY

There are as many water catchments classifications as there are aims for which the classification is used. A classification for the purpose of hydro-power generation will look different from one dealing with forestry and agriculture or international riparian issues. The following terminology of catchments areas is defined based on various needs for Afghanistan (see table 6) that have been identified through consultation of various agencies working in the water and natural resources management sector in Afghanistan as well as the Ministry of Irrigation (MIWRE).

- **River Basins**: Includes 5 large catchments areas that were delineated in Afghanistan considering the definition of the International River Basins of Asia of the “Trans-boundary Freshwater Database” (see figure 7). The River Basins map of Asia was reviewed with the Ministry of Irrigation for the definition of River basin names for Afghanistan. The 5 river basins delineated for the Atlas differs from the 2003 contemplated basin management units of the MIWRE as for the later non-permanent factors such as access and security issues are being considered for basin management purposes (see map , annex III).

- **Watersheds**: Includes 41 meso-catchments areas delineated in Afghanistan. These are individual rivers or meso-catchments that contribute to larger river basins (i.e. Hilmand). Limiting the size of the watersheds was made in order to retain ‘meso-units’ suitable for hydrological and agriculture/agro-meteorological monitoring/analysis and watershed management activities.

- **Micro-Catchments**: Includes micro-catchments which could be managed by local communities. The number of micro-catchments has not been yet delineated in Afghanistan, but these could probably be in the range of 3000 to 4000.

- **Community Water Point Areas**: Includes local water catchments areas defined by any community based water or conservation project (i.e. drinking water point, surface water harvesting structures, etc.).

46 Water Catchment is used as a generic name here.

From the 4 levels of classification for Afghanistan, this Atlas presents maps and statistics for the first two layers of classification, namely the River Basins and the Watersheds. Further work and studies are required to identify the Micro-catchments and their Communities.

Table 6
Level of Interventions and Terminology on Water Catchments

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>TERMINILOGY</th>
<th>DEFINITION IN AFGHANISTAN</th>
<th>TYPE OF USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>International</td>
<td>River Basins</td>
<td>5 basins</td>
<td>Transnational Treaties
Large reservoirs/dams for irrigation/hydro-power
Water/Natural Resources Planning and Protection
Aggregation at River Basin level of Watersheds Planning and Coordination</td>
</tr>
<tr>
<td>National</td>
<td>Watersheds</td>
<td>40 watersheds</td>
<td>River flow monitoring
Agro-meteorology monitoring
Water balance analysis
Water/Natural resources management planning and coordination</td>
</tr>
<tr>
<td>Community</td>
<td>Micro-Catchments</td>
<td>3000-4000 micro-catchments</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Community participatory approach in natural resources management
Land rights and land use issues</td>
</tr>
<tr>
<td>Micro-projects</td>
<td>Community Water-point Areas</td>
<td>Varies with the number of project implemented</td>
<td>Special protection of micro-catchment areas (i.e. drinking water, local salt extraction, protected water resources, etc..)</td>
</tr>
</tbody>
</table>

Figure 7
International River Basins of Asia

Based on preliminary work on social group definition in Afghanistan made by the author. See Raphy Favre, "Interface between State and Society. An Approach for Afghanistan", 30 October 2003.

II. METHODOLOGY

1. Main References used for the Classification
The detailed work of the geographer Humlum published in 1959 was the main reference source on which the watershed maps have been developed. The works of other authors and institutions such as the Ministry of Irrigation (MIWRE) in 1979, Louis Dupree in the 70s, FAO in 1965 and 1996, the GEOCART Atlas of Afghanistan and the FAO/UNEP/OSU Atlas of International Freshwater Agreement were given due consideration. Also, extensive field observations conducted in 2003 by FAO in the framework of a food security program provided first hand field material to fine-tune the watershed boundaries.

2. Factors considered for the Water Catchment Classification

2.1 River Basins
The following factors were used to classify river basins and watersheds:

- Terminal drainage area: River basins regroup rivers which flow to the same terminal drainage area. The main terminal drainage areas for rivers originating in Afghanistan are the Sistan depression, the Garagum Desert (Turkmenistan), the Turkistan plain in Northern Afghanistan, the Aral Sea in Central Asia and the Indian Ocean (Indus river).
- National boundaries have been considered particularly in the North to differentiate between rivers drying in irrigation canals or desert within the national boundaries of Afghanistan and river draining into neighbouring countries. This significantly influences water resources management and farming systems along these rivers.
- The “International River Basins of Asia” of the “Transboundary Freshwater Dispute Database” was considered for River Basins units and names.

2.2 Watersheds
The following factors were used to classify river basins and watersheds:

- Size of the watershed: Water catchments larger than 40,000 Square Kilometres were divided when natural features (i.e. junction of tributaries) or human made structures (i.e dams or irrigation structures) significantly influenced the river regimes. The watershed of Upper Hilmand is the largest of all and due to its homogeneity the catchment area was not subdivided.
- Human intervention: Major dams such as Kajaki dam, Dahla dam or Bandi Naghlu dam which have significantly reshaped the flow of water as well as farming practices, have been considered for the demarcation of watersheds. Similarly, irrigation has in places significantly transformed the river flow and thus were considered to demarcate watersheds (i.e., irrigation system on the Hari Rod, along the Hilmand valley or the ‘none-drainage area’ in the North).

52 J. Humlum, Ibid., 1959.
56 Klemm, W., Ibid., 1996.
58 UNEP/FAO and OSU, Ibid., 2002.
59 UNEP/FAO and OSU. Ibid., 2002.
3. Methodology used for Water Catchments Boundaries Delineation

With the water catchments classification for Afghanistan prepared by FAO, GIS desk work was conducted at AIMS office in Kabul and Mazar-i Sharif to delineate the actual boundaries of the defined watershed and river basins. An initial water catchment maps (river basins and watershed) was produced in early 2003. The boundaries were drawn manually on computer screen using as screen background a DTED elevation model at 500 meters elevation. The work was operated on Arc-View 3.2 software. These initial coarse maps were taken in the field for field verification during extensive agriculture field surveys organized by FAO in 2003. Revisions and fine-tuning of the maps were made based on field observations and with the availability in late 2003 of a DTED elevation model at 3 arc degree intervals (100 meters elevation). Also, a number of other available digitized maps and satellite images of Afghanistan were used to fine tune the boundaries (see table 8). Similar method of delineating boundaries was retained. The figure 8 illustrates the process of classification and delineation of river basins and watersheds of Afghanistan.

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>TYPE</th>
<th>INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:50,000</td>
<td>Topographic Map (Russian)</td>
<td>▶ Detail topographic information
▶ High resolution elevation data
▶ 20m contour interval
▶ Irrigation systems</td>
</tr>
<tr>
<td>1:100,000</td>
<td>Topographic Map</td>
<td>▶ Identify major river systems
▶ Name of Rivers
▶ Location of structures</td>
</tr>
<tr>
<td>Landsat 7 & TM</td>
<td>Satellite Images</td>
<td>▶ 15m-30m ground resolution
▶ Detail River Features
▶ Physical features, relief and valleys
▶ Lakes and water body</td>
</tr>
<tr>
<td>100m Contours</td>
<td>ArcView Shapefile</td>
<td>▶ High resolution elevation information
▶ River System Distribution</td>
</tr>
<tr>
<td>DTED1</td>
<td>100m</td>
<td>▶ Slope and gradients of the topography
▶ 100m resolution of elevation</td>
</tr>
</tbody>
</table>

Figure 8
Flowchart on the process of the watershed boundary delineation for Afghanistan

Literature Review → 500 m Digital Elevation Model

Initial Water Catchment Maps

Field check

1:50,000 & 1:100,000 Topographic Maps → 100 m Digital Elevation Model → Landsat 7 & TM Satellite Images → FAO 1990/93 LandCover Maps

Draft Water Catchment Maps

Distribution for Review to Government and various Agencies

Final River Basin and Watershed Maps